Quinone oxidoreductase 2 is involved in haustorium development of the parasitic plant Phtheirospermum japonicum

نویسندگان

  • Juliane K Ishida
  • Satoko Yoshida
  • Ken Shirasu
چکیده

The family Orobanchaceae includes many parasitic plant species. Parasitic plants invade host vascular tissues and form organs called haustoria, which are used to obtain water and nutrients. Haustorium formation is initiated by host-derived chemicals including quinones and flavonoids. Two types of quinone oxidoreductase (QR) are involved in signal transduction leading to haustorium formation; QR1 mediates single-electron transfers and QR2 mediates 2-electron transfers. In the facultative parasite Triphysaria versicolor, QR1 is involved in haustorium induction signaling, while this role is played by QR2 in the model plant Phtheirospermum japonicum. Our results suggest that there is functional diversification in haustorium signaling molecules among different species of the Orobanchaceae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agrobacterium rhizogenes-Mediated Transformation of the Parasitic Plant Phtheirospermum japonicum

BACKGROUND Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We developed transient and stable transformation systems for Phtheirospermum jap...

متن کامل

Haustorial Hairs Are Specialized Root Hairs That Support Parasitism in the Facultative Parasitic Plant Phtheirospermum japonicum.

A haustorium is the unique organ that invades host tissues and establishes vascular connections. Haustorium formation is a key event in parasitism, but its underlying molecular basis is largely unknown. Here, we use Phtheirospermum japonicum, a facultative root parasite in the Orobanchaceae, as a model parasitic plant. We performed a forward genetic screen to identify mutants with altered haust...

متن کامل

Haustorial Hairs Are Specialized Root Hairs That Support Parasitism in the Facultative Parasitic Plant Phtheirospermum japonicum1[OPEN]

A haustorium is the unique organ that invades host tissues and establishes vascular connections. Haustorium formation is a key event in parasitism, but its underlying molecular basis is largely unknown. Here, we use Phtheirospermum japonicum, a facultative root parasite in the Orobanchaceae, as a model parasitic plant. We performed a forward genetic screen to identify mutants with altered haust...

متن کامل

A single-electron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria.

Parasitic plants in the Orobanchaceae develop haustoria in response to contact with host roots or chemical haustoria-inducing factors. Experiments in this manuscript test the hypothesis that quinolic-inducing factors activate haustorium development via a signal mechanism initiated by redox cycling between quinone and hydroquinone states. Two cDNAs were previously isolated from roots of the para...

متن کامل

Quinone oxidoreductase message levels are differentially regulated in parasitic and non-parasitic plants exposed to allelopathic quinones.

Allelopathic chemicals released by plants into the rhizosphere have effects on neighboring plants ranging from phytoxicity to inducing organogenesis. The allelopathic activity of naturally occurring quinones and phenols is primarily a function of reactive radicals generated during redox cycling between quinone and hydroquinone states. We isolated cDNAs encoding two distinct quinone oxidoreducta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017